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Abstract—This paper brings an overview of mixed-criticality
scheduling theory and its link to industrial applications which
have to comply to industrial safety standards. Mixed-criticality
scheduling theory devises feasibility tests, priority assignments,
task allocations and various models for task systems which consist
of tasks with different criticality levels. This theory emerged as
the response to the growth in processing power of embedded
computer systems. These systems are based on complex hardware
which causes uncertainty in system response time. Additionally,
complex multi-core architectures enable running general-purpose
operating system alongside safety-critical applications. To resolve
issue of uncertainty of system response time and appropriate uti-
lization of system resources, mixed-criticality scheduling theory
was developed by academia.

I. INTRODUCTION

Mixed-criticality scheduling theory is part of real-time
scheduling theory which deals with mixed-criticality task sys-
tems. These systems consist of tasks with different criticality
level. Classical sporadic task system model is extended with
multiple worst case execution times for each job that some
task in a system can dispatch. In last ten years, from the
initial Vestal paper [1], significant effort has been made to
create a model for mixed-criticality system which could be
used in the system certification process [2]. Mixed-criticality
scheduling theory attempts to model software for safety-
critical systems which should reduce time for verification of
safety-critical real-time embedded systems. However, as stated
in [3], one must make a persuasive argument that these models
represent the actual runtime behavior of the system that is
being modeled.

In this paper, brief overview of mixed-criticality scheduling
theory is made, explaining advantages, drawbacks and poten-
tial applications. The paper consists of several sections. Sec-
tion II contains a brief introduction to criticality concept in the
context of safety standards. Section III explains the motivation
and purpose of mixed-criticality scheduling theory. Formal
aspects and models of mixed-criticality scheduling theory are
explained in the section IV. In the section V applications and
links to different research topics are presented. Section VI
explains the limitations and perspective of mixed-criticality
systems in real-life applications.

II. INDUSTRIAL CONTEXT OF MIXED-CRITICALITY
SYSTEMS

In system design of safety-critical systems, non-functional
characteristics such as safety, security and performance must
be taken into account as well as system’s operative functions.
Process for ensuring safety properties of systems is called
system safety assessment process [2]. Typically, system safety
assessment process of the embedded software starts with
hazard analysis. In the next subsections, definitions of basic
concepts in dependable and secure computing are introduced
and connected with system safety assessment process.

A. Concepts of dependable and secure computing
Definitions which are introduced here are based on the work

of Aviženis et al. [4]. These concepts are common and defined
similarly in dependable computer systems literature [5], [6]
and used throughout safety standards.

Definition II.1. Service. A service is behaviour of a system
as it is perceived by a user. A service is correct when it
implements its system function.

Definition II.2. Service failure. A service failure or just
failure, is an event that occurs when the delivered service
deviates from correct service. It is a transition from correct
service to incorrect service. There can be different forms of
failure, which are referred to as failure modes. And each
failure mode has its failure severity.

Definition II.3. Error. An error is deviation of a system
service from correct service.

Definition II.4. Fault. Fault is the adjudged or hypothesized
cause of an error.

With these definitions causal connection between these
concepts is self-evident. When a fault in a system is active, it
produces an error. Error causes transition from correct service
to incorrect service (service failure). This is illustrated on Fig.
1.

Fig. 1. Causal connection between fault, error and failure [4]
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B. Hazard analysis and fault analysis

Software hazard analysis is a procedure which should ensure
that the software does not interfere with the objectives and
correct operation of the system and if interference cannot
be totally avoided, then it must also evaluate and make
recommendation to mitigate how the software can hinder the
objective or operation of system [2]. Software hazard analysis
is classic technique which is used often as a base for fault
analysis [7].

Hazard analysis is a base for fault analysis, which is
described by certain standards. There are several types of fault
analysis as found in [8], [2]:
• Fault Tree Analysis (FTA) [9],
• Failure Modes and Effects Analysis (FMEA) [10],
• Failure Modes and Effect Criticality Analysis (FMECA)

[10].
These techniques are used for analysis of possible software
failures in the system. They are performed after hazard analy-
sis and can discover other failures which were not discovered
by hazard analysis. Every failure of system function has a
corresponding failure mode. In this context, failure mode can
be:
• non-execution,
• late execution,
• incorrect execution [2].

To every failure, severity is assigned based on effect analysis.
The last step in FMEA process is identification of existing
compensating provisions that can mitigate the effects of fail-
ure. FMECA process assigns ”criticality“ level to failure mode
based on the effect analysis and compensating provisions. This
”criticality“ level is referred to as development assurance level
(DAL) [2]. This terminology is specific to DO-178C [11]
(avionics domain). Terminology in other standards is different,
but the basic concept remains preserved (e.g. IEC61508 uses
SIL [12], ISO 26262 uses ASIL [13]).

C. Introduction of criticality levels

Nowadays, there are lots of certifiable embedded systems
for safety operation in avionics, automotive and railway
industry. Their software and hardware development follows
propositions of IEC 61508 standard and other domain specific
standards such as DO-178, ISO 26262 and EN 5021X re-
spectively. Classic approach to the development of embedded
systems follows a federated approach with “one function =
one computer” paradigm [14].

Growth in processing power in embedded systems cre-
ated the possibilities of embedding more functions on one
application processor or even multi-core processors. Such
approach can significantly reduce power consumption and
cost. However, these systems are not suitable for certification
as easy as “simple” microcontroller units. The main reason is
their inherent complexity. However, as investigated by many
papers, MPSoC systems can be used to increase redundancy in
systems which is one of the prerequisites for achieving higher
Safety Integrity Level (SIL) as proposed by the standards.

There are many functions that embedded systems must
implement to ensure correct operation of the system as whole.
As proposed in many papers and implied by safety standards,
there are certain levels of criticality of embedded system
functions. Papers [15], [16] propose a simple model of two
levels of criticality in the airplane embedded system:

• mission critical functionalities (low criticality),
• flight critical functionalities (high criticality).

Combining the functionalities of different level of criticality on
same computing platform (single core or multi-core processor)
creates mixed-criticality system.

Based on results of system safety assessment process, which
identifies failures, failure modes and compensating provisions,
certain level of assurance is assigned to each system function.
These assurance levels motivated researchers and academia
to introduce criticality levels in real-time scheduling theory
and create mixed-criticality scheduling theory. This motivation
created debate in academic and industrial circles [3], [2], [8]
about many misconceptions that were identified in academic
work regarding mixed-criticality scheduling theory.

III. MIXED-CRITICALITY SCHEDULING MOTIVATION AND
BASIS

This section explains common goals and motivational ex-
ample, which engaged academia to create different models and
the new area in real-time scheduling theory.

A. Goals of mixed-criticality scheduling theory

In safety-critical systems, safety assurance is often achieved
through partitioning of system resources following already
mentioned federated approach. This conservative approach
guarantees isolation of system functions with different critical-
ity level. However, this approach does not guarantee efficient
resource usage. Nowadays, embedded systems have greater
computing capabilities which make resource usage even more
inefficient. As it can be seen in [14], system can be optimized
by mixing different criticality functions. Nevertheless, as it is
stated in [12], sufficient independence must be demonstrated
between functions of different criticality both in the spatial
and temporal domain.

According to [3], mixed-criticality scheduling tries to rec-
oncile contrasting goals of a priori system verification and
resource-efficient implementation. Similarly, authors in [17]
point out conflicting requirements of partitioning resources for
safety assurance and sharing resources for efficient usage.

Motivational example which is often used in mixed-
criticality scheduling papers (especially by Baruah [18], [15]
etc.) is briefly presented here.

Example 1. A system consists of three jobs J1, J2 and J3. All
three jobs are released simultaneously on a preemptive fixed
priority processor. Deadline of J1 is 2, while deadline of J2

and J3 is 3.5. J2 and J3 are high criticality tasks and have
to be certified, while J1 is not critical and it is not subject to
certification.
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The system designer estimates WCET to be no greater than
1. Therefore, all jobs can be executed as long as J1 is not
assigned the lowest priority.

System certification in the most cases requires more con-
servative estimations of WCETs. Safety assessor requires 1.5
time units for J2 and J3. System designer has to assign higher
priority to J2 and J3 for J2 and J3 to be schedulable, but then
J1 is not schedulable even if J1 and J2 execute for 1 unit. The
system seems to be unschedulable.

However, if priority ordering is J2, J1, J3 system is
schedulable in case J3 and J2 execute for 1 time unit. If
for instance J2 executes for longer than 1 time unit, system
changes mode and discards low-criticality job J1 and can
successfully schedule J2 and J3. Furthermore, if J2 and J1

signal completion, J3 is still schedulable for more pessimistic
estimation of WCET. In every case, requirements from system
designer and certification authority are satisfied.

Based on the latter example, one of the goals of mixed-
criticality scheduling theory is to find appropriate priority
assignment and runtime behaviour for mixed-criticality task
system.

B. Classical real-time scheduling theory

Foundations for the real-time scheduling theory were made
by Liu and Layland in [19]. In mentioned paper, task system
model was introduced. A task set ∆ consists of m tasks
τ1, τ2, τ3, τi, ..., τm with a corresponding set of periods T
and worst case execution times C. Often additional deadline
parameter set D is added for a task set unless deadline is
implicit Di = Ti, otherwise Di ≤ Ti. Generally, every task
is represented as a set of 3 parameters:

τi = {Ci, T i,Di} (1)

In the paper, Liu and Layland introduce RM and DM
priority assignments and the processor utilization factor, which
is a fraction of processor time spent in the execution of a task
set [19]. Considering already introduced notation utilization
factor U is:

U =

m∑
i=1

Ci

T i
(2)

Utilization factor metric is often used for comparing
scheduling algorithms and testing the feasibility of an assign-
ment for a certain task set. Another concept used as metric is
resource augmentation (e.g. processor speedup factor) which
is also used in scheduling algorithm and policy comparison
[15].

C. WCET estimation problem

To demonstrate deterministic scheduling of tasks, one
should provide a model of runtime behavior or show determin-
istic execution times through the component and integration
testing of a task system. This is easily done using simple
architecture processor by counting cycles of each instruc-
tion. On more complex processors, however, this is not as
straightforward as on simpler architectures. As stated in [17],

uncertainty in the knowledge of WCET value is primarily
epistemic (uncertainty in what we know, or do not know,
about a system) rather than aleatory (uncertainty in a system
itself). To raise assurance in the WCET estimation, one could
create more conservative WCET bound by increasing WCET
itself. However, conservative over-approximated WCET values
degrade utilization of system resources [3], [20]. In the next
subsection, the solution for the uncertainty of WCET value
estimation is presented in the context of mixed-criticality
scheduling theory.

IV. MIXED-CRITICALITY SCHEDULING MODELS

A. Basic sporadic mixed-criticality task system model

The seminal mixed-criticality scheduling paper is based on
the following conjecture: the higher the degree of assurance
required that actual task execution times will never exceed
the WCET parameters used for analysis, the larger and more
conservative the latter values become in practice [1].

According to this conjecture, higher criticality task will
have larger worst case execution times than task with lower
criticality. This is the consequence of a measurement technique
used for determining WCET for certain tasks. WCET value
determined by simple measurement in normal operation should
be used for lower criticality tasks. WCET of higher criticality
tasks will be determined by thorough testing and advanced
measuring methods of task execution. Intuitively, exhaustive
testing will discover larger WCET values. Therefore, with
greater assurance in the precision of the WCET value estima-
tion, comes the more conservative estimation of the WCET
value.

Vestal extended task model with set λ which contains
criticality levels:

λ = {A,B,C,D} (3)

Generally, it can be up n levels:

λ = {λ1, λ2, ..., λn} (4)

Every task in a task set ∆ is described with equation:

τi = { ~Ci, Ti, Di, Li} (5)

where Li is task criticality level and ~Ci is n-dimensional
vector containing WCET values for certain level of safety
assurance. Following the main conjecture of Vestal paper,
vector ~Ci is monotonic non-decreasing vector:

Ci ≤ Cj ,∀i < j (6)

Here are few definitions which are crucial for formulating
mixed-criticality scheduling problem.

Definition IV.1. Sporadic mixed-criticality task system sched-
ule is feasible if all tasks are schedulable considering their low
criticality WCET and if high criticality tasks are schedulable
considering their high criticality WCET.

Based on equations (4), (5), (6) and definition IV.1, classical
mixed-criticality scheduling problem is formulated as follows:

3



Definition IV.2. Classical mixed-criticality scheduling prob-
lem is the problem of finding optimal priority assignment
policy for a given task set ∆ where each task τi is described
with monotonic non-decreasing vector of WCETs ~Ci, period
Ti, deadline Di and criticality level Li. Priority assignment
policy is considered optimal in sense that if there is a feasible
task schedule, optimal policy will find it.

There are different schemes of priority assignment poli-
cies in mixed-criticality systems regarding type of scheduling
(fixed priority or dynamic priority). In following subsections,
these different schemes are reviewed. In the most papers, only
dual criticality systems are considered (tasks with low and high
criticality). However, these models can be easily extended to
more than two criticality levels.

B. Fixed-priority mixed-criticality scheduling based on
response-time analysis

Fixed priority scheduling in mixed-criticality systems based
on RTA (response-time analysis) approach was investigated
by Baruah et al. in [18] where they define three different
scheduling policies based on RTA approach:
• Partitioned Criticality (PC) or Criticality Monotonic Pri-

ority Assignment (CrMPO),
• Static Mixed Criticality (SMC),
• Adaptive Mixed Criticality (AMC).

Every scheduling policy has two main properties:
• priority assignment policy,
• corresponding runtime behaviour.

These properties must ensure that scheduling policy obeys
definition IV.1.

Response-time analysis is based on classical real-time
scheduling analysis defined by Joseph and Pandya in [21].
Response time of task in sporadic task system can be found
by solving recurrence relation:

Ri = Ci +
∑

j∈hp(τi)

dRi
Tj
e · Cj (7)

where hp(τi) is set of tasks with higher priority than τi. A
task is schedulable at priority level ρ if Ri ≤ Di. This is
a conservative analysis which can be relaxed in a sporadic
mixed-criticality task system. SMC and AMC priority assign-
ments use modifications of equation (7) which are suited for
mixed-criticality system. More precisely, these modifications
ensure definition IV.1 is not violated.

Intuitively, a relaxation of equation (7) implies different
runtime behaviour with certain scheduling policy. It is impor-
tant to see the connection between scheduling policy, priority
assignment and runtime behaviour. In case of SMC and AMC,
runtime behaviour impacts response time equation. More
precisely, for every runtime behaviour rule or policy, there
is a corresponding change in response time equation. While
runtime behaviour impacts response time equation, feasibility
tests in priority assignment algorithms depend on the response
time equation.

Algorithm 1 Audsley’s algorithm
Input: ∆ = {τ1, τ2, ..., τn}
Output: Ψ - priority ordered task set

1: function PRIORITYASSIGNMENT(∆)
2: Ψ← ∅
3: n← |∆|
4: unassigned← true
5: ∆′ ← ∆
6: j ← n
7: while j ≥ 1 do
8: unassigned← true
9: for each task τ in ∆ do

10: if isFeasible(τ , ∆′/τ ) ∧ unassigned then
11: ∆′ ← ∆′/τ
12: Ψ← Ψ ∪ {τ}
13: unassigned← false
14: end if
15: end for
16: if unassigned then
17: return ∅ . feasible schedule does not exist
18: end if
19: j ← j − 1
20: end while
21: return Ψ . contains priority ordered set
22: end function

Criticality Monotonic Priority Assignment assigns higher
priority to higher criticality tasks. This is naive approach which
results in very poor schedulability of high utilization task sets.
It does not consider timing properties of tasks.

Priority assignment for Static Mixed Criticality (SMC-
NO) 1 approach is based on Vestal’s adaptation [1] of Aud-
sley’s algorithm [22]. Unmodified Audsley’s optimal priority
assignment is shown by algorithm 1. Algorithm 1 takes a task
set ∆ as input and returns priority ordered set Ψ if there is a
feasible priority assignment. Algorithm returns an empty set, if
there is not any feasible assignment. Function isFeasible
returns true, if task τ is feasible on priority level j. Set ∆′/τ
is set of tasks with higher priority than τ (i.e. hp(τ)).

In [1], Vestal proposed two modifications of Audsley’s
algorithm:
• feasibility testing is done by using already mentioned

modifications of equation (7),
• tie on any priority level is solved by evaluating critical

scaling factor.
SMC-NO priority assignment devised by Vestal was proven to
be optimal later by Dorin et al. [23]. This approach is modified
in [18] to include runtime monitoring (SMC) which yields
better results. In runtime, SMC approach will deschedule
any low criticality task which executes for longer than its
criticality level WCET. When high criticality task executes
for longer than its low criticality WCET, all low criticality
tasks will be descheduled [18]. With introduction of runtime

1NO suffix indicates that approach does not use runtime monitoring
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monitoring, system execution mode Γ is introduced as well. In
dual criticality systems, system execution mode can be either
LO or HI, Γ ∈ [LO,HI].

Adaptive Mixed Criticality (AMC) approach has two
variants. Both variants are made by making response time
analysis more precise than SMC, but the priority assignment
algorithm is similar. AMC-max approach gives the best result
as it can be seen in Fig. 2. AMC approaches have separate
model for HI and LO execution modes. Alongside HI and
LO modes, one must devise response time analysis for the
criticality mode switch event. The criticality mode switch
occurs when some task executes for longer than WCET
corresponding to its criticality mode. The model must ensure
that jobs of HI criticality tasks which were released before
the criticality switch are scheduled properly with respect to
their HI criticality WCET. Priority assignment is similar as in
SMC scheme (different response time equations in feasibility
tests are used). The main difference between SMC and AMC
regarding runtime behaviour is that AMC discards all low
criticality tasks in HI criticality mode.

Fig. 2. Percentage of schedulable task sets [18]

UB-H&L on Fig. 2 represents theoretical utilization bound
which is constructed from separate deadline monotonic prior-
ity assignment for low and high criticality tasks.

C. Exact schedulability test for fixed-priority mixed-criticality
systems

Using state exploration of all possible states in a task
system, it is possible to determine feasibility of a schedule
for a task set. This was done for real-time multiprocessor task
system by Bonifaci and Marchetti-Spaccamela in [24]. Similar
approach was recently used in mixed-criticality sporadic task
system by Asyaban and Kargahi in [25]. In [25], authors devise
an exact schedulability test for mixed-criticality task systems
with given priority order by searching state space of a mixed-
criticality task system. System state space at time instant t is

formulated as:

st = 〈Γ, (ci, qi, pi, εi)Ni=1〉 (8)

where:
• Γ ∈ [LO,HI] is system criticality mode (LO or HI);
• ci ∈ {0, 1, ..., Ci(HI)} is remaining execution time for

current job of a task τi;
• qi is remaining time to the deadline for current job of a

task τi;
• pi is remaining time for the arrival of new job of task τi;
• εi ∈ {0, 1, ..., Ci(HI)} is actual execution time of a job

of a task τi;
Authors in [25], emphasize that the devised exact schedulabil-
ity test is not compatible with the Audsley’s OPA algorithm.
Conditions for the OPA compatibility of a feasibility test
were introduced by Davis and Burns in [26]. More precisely,
schedulability of a task τi at some priority level depends on
any independent properties of tasks with higher priorities but
not on their relative priority ordering. To resolve this issue
authors in [25] devise non-optimal priority assignment algo-
rithms and brute-force methods for assigning priorities using
the exact schedulability test. The results of this approach are
better than the previously reviewed static scheduling schemes
as shown on Fig. 3. However, this approach is not proven to
be optimal.

Fig. 3. Percentage of schedulable task sets [25]

D. Dynamic priority mixed-criticality scheduling

The majority of work in dynamic priority scheduling regards
modification of task timing characteristics to be suitable and
optimally scheduled by modifications of the EDF scheduling
algorithm. As stated in the review [17], first attempt to address
mixed-criticality scheduling problem in the context of EDF
scheduling was done by Baruah and Vestal in 2008 [27]. In
[28], [29], Baruah et al. introduce EDF-VD (EDF with virtual
deadlines algorithm). In the EDF-VD scheme, deadlines of
high criticality tasks are reduced by the same factor in LO-
criticality mode of execution.
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In case of dynamic scheduling approaches, task model is
changed to include different values of deadlines for different
criticality levels and can be represented by equation (9).

τi = { ~Ci, Ti, ~Di, Li} (9)

More general approach in EDF scheduling was pursued by
Ekberg and Yi in [30]. They use demand bound functions for
low and high criticality modes of execution for analysis of the
schedulability.

Definition IV.3. (Demand-bound function as defined in [30]).
A demand-bound function dbf(τi, l) gives an upper bound on
the maximum possible execution demand of task τi in any time
interval of length l, where demand is calculated as the total
amount of required execution time of jobs with their whole
scheduling windows within the time interval.

As in the fixed-priority schemes, the problem is modeling
of task schedule when some task executes longer than WCET
corresponding to its criticality level (criticality switch). They
define a demand bound function for low criticality execution
as:

dbfLO(τi, l) = J(
⌊
l −Di(LO)

Ti

⌋
+ 1) · CiLOK0 (10)

in any time interval of length l. Additionally, JAKk denotes
max(A, k).

In a similar manner, one can devise a demand bound
function for high criticality mode:

dbfHI(τi, l) = full(τi, l)− done(τi, l) (11)

where full and done are defined separately for purpose of
maximizing scheduling window of τi in case of criticality
switch.

full(τi, l) = J(
⌊
l − (Di(HI)−Di(LO))

Ti

⌋
+ 1) · CiLOK0

done(τi, l) =


JCi(LO)− n+Di(HI)−Di(LO)K0,

Di(HI) > n ≥ Di(HI)−Di(LO)

0, otherwise

To ensure maximum scheduling windows for τi deadlines
in low criticality mode need to be tuned. Ekberg in Yiu in
[30] propose a greedy algorithm for finding those deadlines in
pseudo-polynomial time. The results of their approach clearly
dominate different static and dynamic priority assignments
which can be seen in Fig. 4.

The EDF-VD approach uses one scaling factor for deadlines
of all tasks. Therefore, it is dominated by a greedy approach
which finds independent scaling factor for every task in
a task system. However, the simplicity of EDF-VD allows
schedulability bounds to be derived as stated in [17].

Fig. 4. Percentage of schedulable task sets [30]

E. Priority assignment as an integer linear program (ILP)
Priority assignment in real-time systems can be viewed as

an integer linear program (ILP). ILP is a type of linear pro-
gramming problem where some of the variables are restricted
to be integers [31]. Objective function of priority assignment
integer linear programming problem for classical real-time
systems can be formulated as a weighted sum of task worst
case response times:

min
π,ε

|∆|∑
i=1

|wi ·Ri(πi · εi)| (12)

Equation (12) depends on binary matrix π where element πij
equals 1 in case τi has higher priority than τj , 0 otherwise.
Variable ε comes from linearizing ceiling function in equation
(7). Therefore, Ri in (12) is formulated as:

Ri(πi, εi) = Ci +

|∆|∑
j=1

πijεij · Cj (13)

The first formulation of priority assignment as bilinear pro-
gramming problem was done by Lisper in [32] which was not
very practical because of the long computation time. However,
this formulation can be further linearized because the priority
assignment is binary variable. Furthermore, it is not necessary
to specify an objective function when additional constraints
Ri(πi, εi) ≤ Di are specified [32]. This approach was used in
mixed-criticality priority assignment by Al-bayati and Meyer
in [33] where the problem is formulated as mixed-integer
linear programming (MILP) problem [34]. Alongside priority
assignment, authors in [33], optimize task allocation on multi-
core processors. This formulation of a problem is useful when
there are more variables in a system to optimize (e.g. fault-
tolerant task allocation) as well as priority assignment.

F. Different mixed-criticality scheduling approaches
In the section IV-B, approaches based on response-time

analysis are presented, but there are other fixed-priority ap-
proaches in mixed-criticality scheduling. A lot of work has be
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done on slack scheduling and period transformation which is
in fact a continuation of work on robust real-time scheduling.

As described in [17], in the slack scheduling scheme, low
criticality jobs are run in the slack generated by high criticality
jobs only using their low criticality execution budgets. This
was explored by Niz et al. in [35], and by Huang et al. [36].

Adaptation of period transformation in the mixed-
criticality scheduling was used in Vestal’s seminal paper [1].
However, the protocol was introduced before in [37], [38].
The idea is to split a task in several tasks with smaller
periods which ensures its higher relative priority. One of the
shortcomings in implementation is a more frequent context
switch which introduces additional overhead.

V. APPLICATIONS AND LINK TO DIFFERENT RESEARCH
TOPICS

A. Software fault tolerance in mixed-criticality systems

System fault tolerance is an important property of any
safety certifiable embedded system. To achieve fault tolerance,
system software must be extensively tested as proposed by the
standards. Additionally, system should be robust and resilient
to software and hardware transient faults. To achieve this, sys-
tem can be built using safety certified hardware. Furthermore,
the software architecture of system can be built in such way
that it ensures redundancy, fault state detection, monitoring
and graceful degradation of tasks with lower criticality.

Papers [39] and [40] by Huang et al. quantify some system
quality properties from standards (IEC 61508 and DO-178)
and put them in context of mixed-criticality systems on single
core [39] and multi-core processors [40]. In the latter papers,
authors propose scheduling task replicas in order to increase
redundancy and the success rate of certain function. Similar
effort was done by Abayati et al. in [41] where they propose
four-mode model which considers QoS (quality of service)
of LO criticality task alongside issues of robust HI criticality
task execution and certification. In [42], Thekkilakattil et al.
introduce error burst model in the mixed-criticality system and
define MWET (Maximum Wasted Execution Time) for critical
tasks which is caused by error bursts. In [43], authors consider
using various types of hazard analysis in the context of fault-
tolerance in mixed-criticality systems. This approach impacts
task timing characteristics, task allocation and feasibility.

B. Multiprocessor analysis of mixed-criticality systems

From the aspect of task allocation on multi-core systems,
finding optimal task assignment, is the NP hard problem
equivalent to bin packing. Additionally, multi-core approach is
often intertwined with fault tolerance mechanisms. Paper [44]
creates model based on mixed-criticality system model using
task replication and task scheduling on multi-core systems to
achieve maximum utilization factor and spatial independence
between task and task replicas. The model proposed in the pa-
per is used in automotive applications. Fault-tolerant schedul-
ing on multi-core mixed-criticality systems under permanent
failures was investigated in [33].

C. Probabilistic mixed-criticality systems

In the section III-C, importance of WCET estimation was
emphasized. Based on results from different WCET estimation
tools various WCET and WCRT times can be derived. The
worst case execution time in mixed-criticality system is a
function of system criticality mode (e.g. C(LO) or C(HI)). In
this case WCET is expressed as a discrete function with two
possible values [17]. However, sometimes is possible to in-
crease the number of discrete values for WCET. Furthermore,
WCET can be expressed as a probability distribution, recently
referred to as pWCET [45], [46]. However, this approach was
used before in the classical real-time systems [47].

The pWCET can be represented with the exceedance prob-
ability function which is in fact 1−Fcd(C), where Fcd(C) is
cumulative distribution function [17]. The exceedance proba-
bility function represents probability that a job which some
task dispatches will exceed certain value. An arbitrary ex-
ceedance probability function is shown on Fig. 5. Safety

Fig. 5. An exceedance probability function for some task [17]

standards provide failure rates for components in the system
based on their level of criticality. Components with higher
SIL or DAL have smaller failure rates (e.g. 10−9). On the
other hand lower SIL and DAL levels imply higher allowed
failure rates (e.g 10−6). An exceedance probability function
can be used to determine allowed execution time based on
the required failure rate. These statistic properties can be used
in advanced probabilistic models such as constrained Markov
decision process in [48] for scheduling of mixed-criticality
job sets. Probabilistic analysis of fixed-priority uniprocessor
scheduling schemes SMC and AMC was done in [49].

VI. LIMITATIONS AND PERSPECTIVE

There are lots of limitations of the mixed-criticality model
as elaborated in [8] and [2]. This is due to similarity in
terminology of safety standards and academic papers. Concept
of criticality and design assurance level as defined in standards
is more dependent on qualitative than quantitative factors.
Academic model as presented in IV depends only on WCETs
of tasks in task system. The WCET is important parameter,
but rarely it is the only parameter. However, as Baruah affirms
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in [3], mixed-criticality system model has potential to become
part of safety standards if properly created by the academia.

VII. CONCLUSION

In this paper, brief overview of mixed-criticality scheduling
theory was presented. Additionally, mixed-criticality schedul-
ing theory model was described in the context of industrial
system safety assessment process. It is shown that priority
assignment schemes can be very useful in increasing schedula-
bility of task sets while using fixed-priority scheduling and that
run-time policies ensure correct behaviour of system. State-of-
the-art approaches for fixed-priority mixed-criticality priority
assignment based on RTA and state exploration are presented.
Generic EDF scheduling work is presented in the context of
dynamic scheduling and it is shown how modifying relative
deadlines of HI-criticality tasks in LO-criticality mode can
increase overall schedulability of mixed-criticality task sets.
Additionally, mixed-criticality priority assignment is formu-
lated as ILP problem.

There are a lot of possible applications where mixed-
criticality scheduling can be used. As pointed out, important
application is a priori system verification which is important
in safety assessment process of fault-tolerant systems. This
application creates link between mixed-criticality scheduling
theory and other research topics such as probabilistic response-
time analysis and task allocation which are typical problems
in software design for industrial computer systems. There are
a lot of limitations of mixed-criticality scheduling theory and
one must be careful while applying purely theoretical work
to critical environments. However, the theory provides models
which can successfully describe many systems and which can
be used as a tool in system design and verification process.
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